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Properties of Vector Spaces

Unit vectors ~x
i

form a basis which spans the space and
which are orthonormal
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i
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= �
ij
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1 if i = j

0 otherwise

Column vectors
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Row vectors ~v = hv| = �v⇤
1

v⇤
2

. . . v⇤
N

�

Inner product can be defined

~v · ~z = hv|zi = v⇤
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z
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z
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+ · · ·+ v⇤
N

z
N
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Quantum States as Vectors: Dirac Notation

The mathematical structure of QM is based on vector
spaces.

In QM, states correspond to vectors. For each state  , we
associate a “ket” | i and “bra” h | with it (analogous to
column and row vectors).

We can define the inner product between di↵erent states  
and � as h |�i.
In the case where the states can be represented as functions
of position  (x) and �(x), h |�i = R1

�1  ⇤(x)�(x)dx.

Note that if | i and |�i are distinct, h |�i may be complex.
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Quantum States as Vectors

Bras and kets obey the following rules (where a is a scalar):

h |a�i = a h |�i
ha |�i = a⇤ h |�i
h |�i⇤ = h�| i
h�+  | = h�|+ h | and |�+  i = |�i+ | i

Therefore

h 
1

+  
2

|�
1

+ �
2

i = h 
1

|�
1

i+ h 
1

|�
2

i+ h 
2

|�
1

i+ h 
2

|�
2

i
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Hilbert Spaces

The vector spaces of interest in QM are Hilbert spaces.
A Hilbert space H is a linear vector space whose elements are
functions or vectors | i with a positive-definite scalar product
(i.e., h | i > 0 and is finite). The dimensionality N of the
Hilbert space is the number of linearly independent
vectors/states needed to span it (may be finite or infinite).

Properties:

1 Linearity: if | i and |�i are elements of H, so is a + b�.

2 Inner product: h |�i exists and h |�i = h�| i⇤.
3 Every element | i has a norm/length k k such that
h | i = k k2.

4 Completeness: every Cauchy series of functions in H
converges to an element in H.
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Basis States of Hilbert Spaces

For a Hilbert space of dimension N , we can choose N
orthonormal states (basis states) |�

1

i , |�
2

i , · · · |�
N

i which span
the space, such that any state | i in H can be decomposed into

| i =
NX

n=1

b
n

|�
n

i

where b
n

are scalars.
This definition holds in infinite dimensions N !1 provided
NP

n=1

|b
n

|2 <1.
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Orthonormality of Basis

Orthonormal basis: a set of basis vectors �
i

of unit norm,
which are pairwise orthogonal.

Two vectors/states are orthogonal if h�
m

|�
n

i = 0 for
m 6= n.

Normalization: vector/state is normalized if h�
m

|�
m

i = 1.

We postulate that the set of eigenstates of any observable is
orthonormal and hence is a possible basis for the Hilbert space
(provable for finite dimensions, axiomatic for infinite
dimensions).
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Basis Expansion and the Born Rule

Suppose we express an arbitrary state | i in terms of the
orthonormalized eigenstates �

i

of an observable A such that

| i =
X

n

b
n

|�
n

i

Then let us examine the inner product

h�
i

| i =
X

n

b
n

h�
i

|�
n

i =
X

n

b
n

�
i,n

= b
i

The Born rule (“generalized statistical interpretation”) states
that a measurement of A performed on | i has probability
| h�

i

| i |2 of returning the eigenvalue a
i

, leaving the system in
the eigenstate |�

i

i of Â.
Therefore the coe�cients b

n

are the probability amplitudes of
observing |�

n

i upon measurement!
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Dual Space

We define a dual space composed of “bra” states h |
adjoint to the original “ket” Hilbert space. This allows us
to perform operations between vectors/states.

The analogy between column and row vectors is useful. If

we write the coe�cients of state  as | i =

0

BB@

b
1

b
2

. . .
b
N

1

CCA

then the corresponding “bra” is a row vector
h | = �b⇤

1

b⇤
2

. . . b⇤
N

�
.

If h | is the adjoint of | i, the adjoint of a | i (where a is a
scalar) is given by

a | i = |a i () ha | = h | a⇤
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Operators in Dirac notation

Operators transform one state (ket vector) into another state in
H

Â | i = |✓i
We can define an adjoint operator Â† that acts on the adjoint
vector (bra):

h | Â† = h✓|
For linear operators and scalar a:

Âa | i = aÂ | i
(Â+ B̂) | i = Â | i+ B̂ | i
Â(| i+ |�i) = Â | i+ Â |�i

EE270 Fall 2017 10



Projection and Identity Operators

The projection operator P̂
i

picks out (“projects”) a
particular component of a state vector P̂

i

= |�
i

i h�
i

|.
For any | i =P

n

b
n

|�
n

i,
P̂
i

| i = |�
i

i h�
i

|P
n

b
n

|�
n

i = |�
i

iP
n

b
n

h�
i

|�
n

i =
|�

i

iP
n

b
n

�
in

= b
i

|�
i

i

The identity operator Î always returns the state it is
applied to
Î | i = | i and h | Î = h |
Note that Î =

P
n

|�
n

i h�
n

| =P
n

P̂
n

(a very useful result)

If the eigenvalues indexed by n range over a continuous set
of values, the summation becomes an integration
Î =

R |�
n

i h�
n

| dn
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An Infinite-Dimensional Hilbert Space: L2

The Hilbert space L
2

(a, b) is the set of all square-integrable
functions f(x) on the interval [a, b], i.e., f(x) such thatR
b

a

f⇤(x)f(x)dx <1
The inner product in L

2

(a, b) is defined as

h |�i =
Z

b

a

 ⇤(x)�(x)dx

Examples include L
2

(0, a) for the infinite square well and
L
2

(�1,1) for the free particle. Note the infinite
dimensionality of the Hilbert spaces (evidenced by the
infinite number of energy eigenfunctions, which comprise
possible bases for these spaces).
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Interregnum: The Dirac Delta Function

We define the Dirac delta function via

�(x) ⌘
(
1 for x = 0

0 otherwise

1Z

�1

�(x)dx = 1

Note the units of �(x) are x�1.
The Dirac delta function picks out the origin. Operationally, for
any function f(x),

f(x)�(x� a) = f(a)�(x� a)

because for any integral
1Z

�1

f(x)�(x� a)dx = f(a)

1Z

�1

�(x� a)dx = f(a)
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The Dirac Delta Function cont’ed

The Dirac delta function is not a traditional mathematical
function, though it can be seen as the limit of a variety of
sharply peaked well-defined functions, for instance

�(x) = lim
✏!0

1

⇡x
sin
⇣x
✏

⌘

Note that if we take f(x) = x, we obtain

x�(x� x
0

) = x
0

�(x� x
0

)

This looks like an eigenvalue equation for the operator x̂.
The implication is that the eigenfunctions of the position
operator are Dirac delta functions centered at particular
eigenvalues x

0

.
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The Dirac Delta Function cont’ed

f(x) =
1p
2⇡

1Z

�1

F (k)eikxdk , F (k) =
1p
2⇡

1Z

�1

f(x)e�ikxdx

If f(x) = �(x� x
0

), then F (k) = exp(�ikx0)p
2⇡

. This implies

�(x� x
0

) =
1

2⇡

1Z

�1

eik(x�x0)dk

The Fourier transform of a delta function has constant
magnitude |F (k)|2 = 1

2⇡

. A function completely localized in
position space is completely delocalized in momentum space,
and vice versa.
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Basis States for Position/Momentum Space

For the Hilbert space L
2

, we can choose real space x or
momentum space p as our basis. For x̂, the
eigenfunctions/eigenvalues are �(x� x

0

) for all x
0

in the
range of L

2

. For p̂, we can define the eigenfunctions
1p
2⇡~ exp(ipx/~) with definite momentum p = ~k.

Relationships between basis states:

hp
1

|p
2

i = 1

2⇡~

1Z

�1

ei(p2�p1)x/~dx = �(p
1

� p
2

)

hx
1

|x
2

i =
1Z

�1

�(x� x
1

)�(x� x
2

)dx = �(x
1

� x
2

)

hx
1

|p
1

i = 1p
2⇡~

1Z

�1

�(x� x
1

)eip1x/~dx =
1p
2⇡~

exp(ip
1

x
1

/~)
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Position and Momentum Space, cont’ed

Note that though the position and momentum
eigenfunctions are not square-integrable (and hence
technically outside the Hilbert space), they are
orthonormal in the Dirac sense.
This is generally the case for operators whose eigenvalues
are continuous.
However, it is still extremely useful to use these states as
basis functions, so we can write a general state  as

| i =
Z

dx |xi hx| i

=

Z
dp |pi hp| i

Note that because we are dealing with a continuous rather
than discrete range of eigenvalues, we integrate rather than
sum over all possible eigenvalues.
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Position and Momentum Space cont’ed

| i =
Z

dx |xi hx| i =
Z

dp |pi hp| i

hx| i =  (x), i.e., the value of the wave function at position x is
simply the projection of the state | i onto the position
eigenstate |xi.
This makes our original interpretation of | (x)|2 as the
probability of measurement of x consistent with and subordinate
to the Born rule that the probability = | hx| i |2.
Likewise we can interpret  (p) = hp| i as the momentum space
wave function, i.e., probability amplitude for measurement of p.
Complete information about the state can be obtained from  (p)
or  (x); they are simply projections of | i onto di↵erent bases.
Consistency of inner product definitions: using Î =

R |xi hx| dx

h�| i = h�|(
Z

|xi hx| dx) i =
Z
h�|xi hx| i dx =

Z
�⇤(x) (x)dx
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Position and Momentum - Fourier Transforms

Conversion between  (x) and  (p):

 (p) = hp| i =
Z
hp|xi hx| i dx

=

Z
e�ipx/~ (x)

dxp
2⇡~

Similarly  (x) =
R
eipx/~ (p) dpp

2⇡~ .

The conversion between position and momentum space is
mathematically a Fourier transform because
hx|pi = 1p

2⇡~ exp(ipx/~).
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Discrete vs. Continuous Spectra

Let Â |a
n

i = a
n

|a
n

i (where the eigenvalues a
n

are discrete) and
B̂ |b

n

i = b
n

|b
n

i (where the eigenvalues b
n

are continuous)

Discrete Continuous

ha
m

|a
n

i = �
mn

hb
m

|b
n

i = �(b
m

� b
n

)
P

m

|a
m

i ha
m

| = 1
R
db

m

|b
m

i hb
m

| = 1

|↵i =P
m

|a
m

i ha
m

|↵i |�i = R db
m

|b
m

i hb
m

|�i
P

m

| ha
m

|↵i |2 = 1
R
db

m

| hb
m

|�i |2 = 1

ha
m

|A|a
n

i = a
n

�
mn

hb
m

|B|b
n

i = b
n

�(b
m

� b
n

)

where �
mn

is the Kronecker delta function and �(b
m

� b
n

) is the
Dirac delta function.
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Operators - Matrix Formulation

We have seen that quantum states can be represented as
vectors in a vector space of dimension N .

A linear operator can be represented by an N ⇥N matrix
that operates on bra and ket vectors.

It is completely defined by its actions on the basis vectors.

If we know Â |�
n

i = |�0
n

i for each n we can write

Â | i = Â
X

n

b
n

|�
n

i =
X

n

b
n

Â |�
n

i =
X

n

b
n

|�0
n

i = | 0i

Here the set of states |�
n

i is some orthonormal basis (not
necessarily eigenstates of Â), while the set |�0

n

i is generally
not orthonormal.
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Operators - Matrix Formulation cont’ed

Let us express | 0i =P
m

b0
m

|�
m

i by projecting it back onto the

original basis. We can find each amplitude b0
m

of the new state

b0
m

= h�
m

| 0i = h�
m

|
 
X

n

b
n

|�0
n

i
!

= h�
m

|
 
X

n

b
n

Â |�
n

i
!

=
X

n

h�
m

|Â|�
n

i b
n

) b0
m

=
X

n

A
mn

b
n

We have N2 scalars A
mn

= h�
m

|Â|�
n

i which depend only on
the basis states {|�

m

i}, not | i or | 0i.
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Operators - Matrix Formulation cont’ed

We can therefore write | 0i = Â | i as a matrix equation.

| 0i =

0

BBB@

b0
1

b0
2

...
b0
N

1

CCCA
=

0

BBB@

h�
1

|Â|�
1

i h�
1

|Â|�
2

i · · ·
h�

2

|Â|�
1

i h�
2

|Â|�
2

i · · ·
...

...
. . .

h�
N

|Â|�
1

i h�
N

|Â|�
2

i · · ·

1

CCCA

0

BBB@

b
1

b
2

...
b
N

1

CCCA

The scalars A
mn

= h�
m

|Â|�
n

i are the matrix elements of Â in
the basis set �

i

.
In Dirac notation, we can write Â =

P
m,n

A
mn

|�
m

i h�
n

|.
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Adjoint Operators

For scalars we have a | i = |a i  ! ha | = h | a⇤
For adjoint operators: Â | i = |Â i  ! hÂ | = h | Â†

If Â | i = | 0i  ! h | Â† = h 0|
If A

mn

= h�
m

|Â|�
n

i then

Â†
mn

= h�
m

|Â†|�
n

i
= hÂ�

m

|�
n

i
= h�

n

|Â�
m

i⇤

= h�
n

|Â|�
m

i⇤

Therefore A†
mn

= A⇤
nm

. Adjoints are the transpose conjugate of
the operator matrix.

A =

✓
a b
c d

◆
 ! A† =

✓
a⇤ c⇤

b⇤ d⇤

◆
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Adjoints cont’ed

It can be shown that (ÂB̂)† = B̂†Â†.

In general, to find the adjoint of bras, kets, operators, or scalars:
Reverse order of all factors
Â ! Â†

|i  ! h|
a ! a⇤.
Note that in an quantity like h↵|Â|�i, Â can operate to the
right (as Â on the ket) or to the left (as Â† on the bra). The
same result will be obtained in either case.
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Hermitian Operators and Observables

Hermitian operators Â have the property that Â† = Â:

This implies h�|Â i = hÂ�| i.
In matrix notation, A

mn

= A⇤
nm

. Any Hermitian matrix
will be of the form

A =

2

6664

A
11

A
12

A
13

· · ·
A⇤

12

A
22

A
23

· · ·
A⇤

13

A⇤
23

A
33

· · ·
...

...
. . .

3

7775

All eigenvalues of Hermitian operators are real. Therefore,
(by postulate), all operators for physical observables are
Hermitian (because measured quantities are real numbers).

An operator is anti-Hermitian if Â† = �Â.
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Hermitian Operators: Reality

Proof of the reality of eigenvalues of Hermitian operators:

If |�
n

i and a
n

are the sets of eigenvectors and eigenvalues of Â,
then Â |�

n

i = a
n

|�
n

i and h�
n

| Â = h�
n

| a⇤
n

.
Then h�

n

|Â|�
n

i = a
n

h�
n

|�
n

i = a⇤
n

h�
n

|�
n

i depending on
whether Â operates to the left or right. Therefore a

n

= a⇤
n

, so
a
n

must be real.
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Hermitian Operators: Orthogonality

Proof of the orthogonality of eigenvectors of Hermitian operators:

h�
m

|Â|�
n

i = a
n

h�
m

|�
n

i (operating to the right)
and
h�

m

|Â|�
n

i = a⇤
m

h�
m

|�
n

i (operating to the left)
Therefore a

n

h�
m

|�
n

i = a⇤
m

h�
m

|�
n

i
If a

n

6= a
m

then h�
m

|�
n

i = 0, i.e., h�
m

|�
n

i = �
mn

.
Nondegenerate eigenstates of Hermitian operators are
necessarily orthogonal.
If di↵erent eigenstates are degenerate (i.e., share the same
eigenvalue), we can always construct linear combinations of
them which are orthonormal (for example using the
Gram-Schmidt procedure).
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Commutators

Commutators between two operators are defined as
[Â, B̂] = ÂB̂ � B̂Â.

Clearly [Â, B̂] = �[B̂, Â].

Two operators Â, B̂ commute (or are compatible) if
[Â, B̂] = 0.

To figure out commutation relations, apply the operators
on a test function and look at the end result (sans test
function).

Example: the canonical commutation relation [x̂, p̂] = i~.
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The Uncertainty Principle (again)

Consider two operators Â, B̂ which don’t commute,
and whose commutator [Â, B̂] = iĈ where Â, B̂, Ĉ are Hermitian.

From linear algebra, the Schwarz inequality for any two vectors
|↵i , |�i states that

h↵|↵i h�|�i � | h↵|�i |2

Take |↵i = (Â� hAi) | i and |�i = (B̂ � hBi) | i where
hAi , hBi are expectation values over | i and must be real.
h↵|↵i = h |(Â� hAi)2| i = �2

A

h�|�i = h |(B̂ � hBi)2| i = �2
B

For any complex z

|z|2 = [Re(z)]2 + [Im(z)]2 � [Im(z)]2 =


1

2i
(z � z⇤)

�
2
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The Uncertainty Principle, cont’ed

For z = h↵|�i this implies

�2
A

�2
B

�
✓

1

2i
[h↵|�i � h�|↵i]

◆
2

h↵|�i = h |(Â� hAi)(B̂ � hBi)| i
= h |ÂB̂| i � hBi h |Â| i � hAi h |B̂| i+ hAi hBi h | i
= hÂB̂i � hAi hBi

By similar reasoning h�|↵i = hB̂Âi � hAi hBi

h↵|�i � h�|↵i = hÂB̂i � hB̂Âi = h[Â, B̂]i = iĈ

) �2
A

�2
B

�
✓

1

2i
h[Â, B̂]i

◆
2

= | hCi |2
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The Uncertainty Principle, cont’ed

Example: [x̂, p̂] = i~

�2
x

�2
p

�
✓
~
2

◆
2

) �
x

�
p

� ~
2

Note that if two operators commute (are compatible), it is
possible that the same state will be an eigenfunction of both
operators. Then the two corresponding observables can be
simultaneously specified for that state.
The eigenvalues of the observables are “good quantum
numbers” of the state.
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Some Equivalences

Wave Functions Vectors Dirac Notation

 

0

BBB@

b1

b2

.

.

.

bN

1

CCCA
| i

 

⇤ �
b

⇤
1 b

⇤
2 · · · b

⇤
N

�
h |

 (~r)

0

B@

 (x1)

 (x2)

.

.

.

1

CA hr| i

R
 

⇤
 d~r

�
b

⇤
1 b

⇤
2 · · · b

⇤
N

�

0

BBB@

b1

b2

.

.

.

bN

1

CCCA
h | i

ˆ

A = �

⇥
A

⇤

0

BBB@

b1

b2

.

.

.

bN

1

CCCA
=

0

BBB@

c1

c2

.

.

.

cN

1

CCCA
ˆ

A | i = |�i
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Some Equivalences cont’ed

Wave Functions Vectors Dirac Notation

hAi =
R
 

⇤
ˆ

A dr

�
b

⇤
1 b

⇤
2 · · · b

⇤
N

� ⇥
A

⇤

0

BBB@

b1

b2

.

.

.

bN

1

CCCA
h |A| i

ˆ

A�n(x) = an�n(x)

0

BBB@

a1 0 0

0 a2 0

.

.

.

0 0 aN

1

CCCA
in �n basis

ˆ

A |�ni = an |�ni

R
�

⇤
m�nd~r = �mn

�
0 · · · 1 · · · 0

�

0

BBB@

0

1

.

.

.

0

1

CCCA
= �mn h�m|�ni = �mn
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Unitary Operators

Unitary operators Û are such that Û Û † = Û †Û = Î.

This implies Û † = Û�1.

Note that unitary operators are not in general Hermitian
and vice versa. The application of an unitary operator on a
state leaves the norm unchanged.

Unitary operators are useful because they transform
between di↵erent choices of basis states in H.
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Ĥ as the Generator of Time Evolution

Let | (t0)i =
P

i |�ii h�i| (t0)i =
P

i bi(t0) |�ii where {�i} are

eigenstates of Ĥ with corresponding energies {~!i}. From the
time-dependent SE, the state at some later time t is

| (t)i = Û(t� t0) | (t0)i = exp

 
� iĤ(t� t0)

~

!
| (t0)i

= exp

 
� iĤ(t� t0)

~

!
X

i

bi(t0) |�ii

=
X

i

bi(t0)e
�i!i(t�t0) |�ii

Here we define

Û(t�t0) ⌘ exp

 
� iĤ(t� t0)

~

!
= 1� i(t� t0)

~ Ĥ+
1

2!

✓
i(t� t0)

~

◆2

Ĥ2+. . .

The Hamiltonian “generates” the time evolution of states. Û(t� t0) is
unitary.EE270 Fall 2017 36



Momentum as the Generator of Spatial Translation

Define the translation operator T̂ (a) such that
T̂ (a)f(x) = f(x+ a). (T̂ translates a state by distance a.)

T̂ (a) = exp

✓
ip̂a

~

◆
= exp

✓
a
d

dx

◆
= 1 +

d

dx
a+

1

2!

d2

dx2
a2 . . .

T̂ (a)f(x) = f(x) +
df(x)

dx
a+

1

2!

d2f(x)

dx2
a2 · · · = f(x+ a)

Note the similarity between T̂ (a) and the time evolution

operator Û(t0) = exp

 
� iĤt0

~

!
. Both are unitary operators.

We say momentum “generates” spatial translations.
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Ehrenfest Theorem

What is the time dependence of expectation values?

d hAi
dt

=
d

dt
h (t)|Â| (t)i =

Z
d

dt

⇣
 ⇤(x, t)Â (x, t)

⌘
dx

=

✓
@

@t
h (t)|

◆
Â | (t)i+

*
 

�����
@Â

@t

����� 
+

+ h (t)| Â
✓
@

@t
| (t)i

◆

= � 1

i~

⇣
hĤ |Â| i � h |Â|Ĥ i

⌘
+

*
 

�����
@Â

@t

����� 
+

=
i

~ h[Ĥ, Â]i+
*
@Â

@t

+

If Â has no explicit time dependence, then dhAi
dt

= i

~

D
[Ĥ, Â]

E
.
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Ehrenfest Theorem, cont’ed

Consider a Hamiltonian Ĥ = � p̂

2

2m

+ V (x).

d hpi
dt

=
i

~ h[Ĥ, p̂]i = i

~

⌧
V (x),�i~ d

dx

��

=

Z
 ⇤(x, t)V (x)

@ (x, t)

@x
dx�

Z
 ⇤(x, t)

@

@x
(V (x) (x, t))dx

�

= �
Z
 ⇤(x, t)

dV (x)

dx
 (x, t)dx

Therefore
d hpi
dt

= �
⌧
dV (x)

dx

�

The quantum expectation values reproduce classical mechanics.
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Symmetry and Conservation Laws

Any generator that leaves the Hamiltonian of a system
invariant corresponds to a conserved quantity of that system
(Noether’s theorem).

Examples:
Translational invariance implies momentum conservation:
[Ĥ, p̂] = 0 for free particle (Ĥ = p̂2/2m) implies dhpi

dt

= 0.

Temporal invariance implies energy conservation: [Ĥ, Ĥ] = 0

for time-independent Ĥ implies dhEi
dt

= 0.
Rotational invariance implies angular momentum

conservation: [Ĥ, ~J ] = 0 for angular momentum ~L implies
dh~Li
dt

= 0.
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